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General Expressions for IM/DD Dispersive Analog
Optical Links With External Modulation or
Optical Up-Conversion in a Mach—Zehnder

Electrooptical Modulator
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Abstract—A general derivation of the optical modulation —or maximum (MATB) transmission bias point) [2], [7]-[9] or
process in a dual-drive Mach-Zehnder modulator (DD-MZM) DD-MZM biased to behave like a harmonic single side-band
is introduced. The expressions include all harmonics and are (HSSB) optical up-converter [10].

entirely general in terms of bias point. Chromatic dispersion is All these modulation or up-conversion schemes are based on
also included allowing the prediction of a number of important S P . )
phenomena in photonic signal transmission. Examples of special biasing the DD-MZM (standard MZM is a particular case of
cases of these general equations are then presented. Similathe DD-MZM modulator) on different points (QB, MATB, and
expressions are _intrqduced for harmonic optical up-convers_ion MITB) and introducing a phase shift (8/2, orr) between both
thoric:]‘:%? ah%hsoetc;wi?trgfls)is\;etv)e?lsg%?hr/]lgMDgr-i\’\/ﬂest covering any bias  g|actrodes signals. Previous studies in the literature are limited
P P _ o to first-order approximations of all these different cases. In this
Index Terms—Electrooptic ~modulation, ~Mach-Zehnder paper, the optical modulation process in a DD-MZM modulator

electrooptical modulator, nonlinear distortion, optical commu- 5 anglyzed in a simple and rigorous way including the effect of
nication, optical fiber dispersion, optical frequency conversion, - . - .
the optical link dispersion.

optical modulation/demodulation, optical propagation in disper- ! " . .
sive media. This paper is organized as follows. In Section Il, the gen-

eral expression for the use of a DD-MZM as an electrooptical
modulator in an IM/DD dispersive link are obtained, while Sec-
|. INTRODUCTION tion 11l is devoted to extracting the general expression when the
HE Mach—Zehnder electrooptical modulator (MZM) ha®D-MZM is used as an electrooptical up-converter. Section IV
beenthoroughly used forthe generation and transmissioreellects the particular expressions and main results for five dif-
microwave/millimeter-wave signals [1], [2]. In the conventionalerent modulation or up-conversion schemes (DSB, SSB+
case, the MZM is biased at its most linear point [also known & HSSB, MITB, MATB) making references to the general ex-
quadrature bias (QB)] and driven directly by the microwawveressions introduced in Sections Il and Ill. Finally, the validity
signal in such a way that a double-sideband plus carriefthese expressions is assessed in Section V and some conclu-
(DSB + C) modulation is obtained. The performance of thisions are presented in Section VI.
modulation is severely limited by the chromatic dispersion of
the optical link [3], which is the most relevant impairment Il. CASE1l: DD-MZM AS A MODULATOR
in optical microwave/millimeter-wave transmission systems
operating near 1550 nm. Chromatic dispersion also limits t
performance of dispersive optical devices like the tunaba%
delay lines based on highly dispersive fiber or chirped fiber
gratings [4], [5]- In order to mitigate this limitation, an optical
single-sideband plus carrier (SSBC) modulation was proposed .
by using a dual-drive Mach—-Zehnder modulator (DD-MZM) Vi(t) =Vner + vrr sin(wret + drri)
[5]1 [6] va(t) = VDCQ + VRrF sin(prt + (/)RFQ). (l)
Optical harmonic up-converting techniques have been
proposed and demonstrated employing either a standard M£Ms important to point out that, according to (1) and Fig. 1, a
biased at the nonlinear operating region (minimum (MITB3tandard MZM is a particular case of the DD-MZM modulator
whereprr1 = ¢rre 7. If the MZM is driven according to the
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The electrical voltages applied on both electrodes of a
-MZM modulator (Fig. 1) will be composed of a dc term
d an RF component (same amplitude but arbitrary phases)
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Fig. 2. Externally modulated (DD-MZM) analog dispersive optical link.

Fig. 1. Dual-drive Mach-Zehnder (DD-MZM) electrooptical modulator.

link at w = w,., respectively, and; is the first-order dispersion

output is term.
- As the optical signal at the MZM output from (3) passes
Eo(t) = /2Pt pei®e 7, through an optical d!sperslve link Wlth.afrequenc'y response de-
®) 1€ n:z_:oo (mxr) fined by (6), the optical signal at the link output is
- CO8(, Fngpg)elRriTIm) - (3) [2Pt;;
Bk (t ff ef Prini Z Jn(mrr)Cpc(n)
whereJ,,(x) is the Bessel function of first kind and ordeyrt ; n=—00
are the MZM insertion losses, and . (nwnp (tH01) +ndm+(02/2) n* wip) (7)
MRF = TURF (4a) WhereCDc(n) = COS((/),U =+ m/)d) and¢1mk = (/)c +4,.
Ve Furthermore, as this optical signal is detected by an ideal pho-
B 7(Vbc1 + Vbez) b todetector with responsivit§’, the temporal expression of the
Pe = e + 2V, (4b) detected current can be calculated from the envelope of the in-
brpL + & cident optical signal and expressed as (8), shown at the bottom
Om = w (4c) of this page, where
Voe1r — W1 I(n)=J, C . 9
b :w(Dch—VDCQ) (ad) (n) = Ju(mrr)Cpe(n) )
N Finally, by simple manipulation in (8), we have
by = $RF1 — PRF2 (4e)

2. , ipalt) = §RPtff < +Z ) (10)

where V. is the MZM switching voltage ang. — ¢, is the
optical insertion phase at = w,. when no voltages are applied

at the drives. where
In Fig. 2, an analog IM/DD optical link with a DD-MZM used y 0 ) )
as an electrooptical modulator is sketched. The dispersive link Ipc = Z Pn)y= > Ji(mrr)Che(n) (11a)
is modeled with a frequency response as n=-o0 n=-—o0
Hgni (@) = [ Hyine (w)] o) (6)  Iprr(p) =2 Z - p)
wherew is the frequency of the optical signal. The frequency b
response of the dispersive link is assumed to be flat in ampli- - COS <prF(t+91)+p</>m+5p(2n—p)w§F) .
tude and parabolic in phase inside the optical signal bandwidth
around optical carrier frequenay = w, (11b)

Equations (10) and (11) show that the detected signal includes a
dc term and harmonics of the modulating signal frequency. The
0, ®)  dc term from (11a) depends on both the MZM biasing point
Btink(w) = 0, + 61 (w — w.) + 5 (w—we)? and the optical modulation index rather than the optical link
dispersion. The expression of thih harmonic of the RF at the
whereL is the optical power loss of the dispersive lidk,and detected signalin (11b)is the sum of different beats of frequency
6, are the insertion phase and group time delay of the dispersa@mponents of the optical signal which are separateg.t-.

| Hiink(w)| =

8-

REumkEf.  RPtrr o= | v (e )
ipa(t) = 1; link _ ff ST ST H(n)I(n—p)ed@ene 4O +pon+ 6D pn—pfie) ®

p=—0 In=—00
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Fig. 3. Optical up-conversion of an IF modulated optical signal through a
DD-MZM in an analog dispersive optical link.

IIl. CASE 2: DD-MZM As AN UP-CONVERTER

The configuration of the IM/DD optical link using a
DD-MZM as a harmonic up-converter is shown in Fig. 3, where
a DD-MZM is placed at the transmitter side in order to up-con-
vert an intermediate frequency (IF) signal which modulates
the intensity of an optical carrier. If the IF modulation stage is
assumed to be ideal, the optical field at the DD-MZM input is

Ewr(t) = V2P (1 + % cos(wrrt + d)IF)) el (12)

wheremr is the IF intensity modulation index. The optical field
after the up-conversion stage at the MZM (assumed to be linear
from the optical point of view) may be expressed as

Emzm(t) = 4/ 2.Ptff(3j¢C (1 + % COS(wIFt + (/)IFe))

Y Jn(mio)Cno(n)e Merottren) (13)

IDC—|:

-

m
i
Iorp = ——

IpLO(p) =2 |:1+%
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wherel(n) from (9) and the eight different terms in (15) corre-

Wz e

} Z 2(mLo)Che(n) (16a)

0
IIF = MIF Z IQ COS <52 UJIQF>

n=—oo

- cos (wrF (t461) + ¢rre +bo2nwrowrr)

(16b)

> Fn)

n=—oo

- COS (2wIF(t—|— 91) +201re +92nwLo2wIF)

(16c)
2
Cos(92prowIF)}

oo

S I(n)I(n-p)

n=—oo

0
-cos <pro(t+91) +pPm+ 52 p(2”—p)w%o>

(16d)

[
— Iypo+1r(p) =mrr cos <52 wir(pwro +wIF)>

wheregrr, takes into account the difference between the MZM
insertion phases for the three optical components at MZM input.
The other parameters in (13) are defined as in (4),7but
corresponds tengry of (4a).

As the optical signal at the MZM output from (13) passes
through an optical dispersive link with a frequency response de-
fined asin (6), the optical signal at the link output is (14), shown
at the bottom of this page. After detection using an ideal pho-
todetector with responsivitiR, the temporal expression of the

detected current may be expressed as I
R Pt
ipa(t) = Lff Ing + Ir + v
+ Z [IpLo(p) + Lioyir(®) + Lio—r(p)
p=1

+ Iprotorr(p) + Ipr,o—QrF(p)H

(15)

oo

Y In)(n—p)

n=—o0

0s <(pro +wrr)(t+61)+0dm + Prre

62

+2(

2n—p)wro(pwro +wrF)>
(16e)

B2
pl.LO—TF (p) = My COS 5 WIF (pro - wrF)

I(n)I(n—p)

n=—o&

08 <(pro —wip)(t+61)+pPm, — Prre

+ 9—22 (2n — plwro(pwro — wrp))
(16f)

Ein(t) =

n=—oo

2Pt jdn; = j(nw n n-w
V Lff‘ ¢! i [ Z [Jn(mRF)CDC(n) I (Pero(t481) o +(82/2) i)

. (1 + % el (2/2) “ip cos (wn:(t + 91) + ¢rre + egnwy,ownr) ) :| ] (14)
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P

Losar) =" 3> 1m0 -p)

n=—0o0

- COS <(pro +2w1r) (E+01) + PP+ 2¢1R

6
+ 52 (2n—p)wro(pwro+ 2wrF))
(169)
1

P

Lo—21r(p) = % Z I(n)I(n —p)

n=—0oo

- 08 <(PwLo — 2wip )(t + 61) + pdrm — 2h1re

1%
+ 52 (2n — plwro(pwro — 2wIF)> .

(16h)
Detected current includes three termdsd, I, I2rr) around

dc and five termsi,Lo, {prot1r. [protorr) around each har-
monic of the LO signal inserted into the DD-MZM up-converte

1971

point and it will have no influence on the relative level of the
harmonics.

As expected, the dc term is independentgfr or link disper-
sion (characterized l#), butthe level of the different harmonics
ofthe modulating signal are clearly dependent on both terms.

As an example of the results that may be obtained from
(17a)—(17c), the level of the RF component of the detected
signal against phase dispersion tetin= (62w2)/2 (a term
which is directly proportional to the total optical link dispersion
and proportional to the square of the signal frequency, so both
responses against total dispersion (proportional to optical link
length) or frequency can be estimated) is shown in Fig. 4 (for
five different values of optical modulation indexgr).

B. Single-Sideband Plus Carrier Modulation (S$EC)

To generate an optical single-sideband modulation, the
DD-MZM hasto be biased at the linear poif¥#tpc; — Vpea| =
Vi /2,withaphaseshiftbetweenMZMdrives @k r1 — prr2| =
7/2. Inthis case, the different components of the detected signal
(dc term and harmonics of the RF frequency) from (11) would

Depending on the particular DD-MZM driving conditions, somé&educe to

of these terms may vanish.

IV. PARTICULARIZED EXPRESSIONS
A. Double-Sideband Plus Carrier Modulation (DSBC)

For conventional intensity modulation (DSB C), the
DD-MZM is biased at the linear poinf/nc1 — Vpes| = Va /2,
with a phase shift between electrodeg@®fr1 — ¢rp2| = 7.

In this case, the different components of the detected sig
from (11) may be simplified as

_ o 2 _ - 2 2 (T T
Inc = n;m (n) = n;m J2(mgr) cos (Z :l:ng)
1 << 1
= 5 Z Jn(me) = 5 (173)
IPRF(p) = COs (prF(t + 91) +p¢rn)
. [,Jg/Q(mRF) + 2(—1)P/? Z J.(mgF)
n=(p/2)+1

A

J—p(mrF) cos <9—22 p(2n — p)w§F> ]
(17b)

for even harmonics of RF signg éven) and

Ire(p) ==£2cos (pwrr(t + 01) + pdum,)
> (DR ) e
n=(p+1)/2
- COS <9—22 p(zn — p)wép> (17C)

for fundamental and odd harmonics of RF signab¢d). The

Inc= Y I*n)

_ N 2 (T T

= n;m J:(mgr) cos (4 :I:n2)
J2(m i

_@ +T; J2(mer)

nal 1

= 18

; (182)
i3
Lrr(p) = cos (PZ ) cos (pwrr(t 4 01) + porm)

Topa(mrp) (=12 42 Y7 Ty (mrr)

n=p/2+1

|

F 2sin (pwrr(t + 61) + pdm)

- Jn_p(mRF) cos <92—2 p(2n — p)w?w) ]

Z Jn(mrr)Jn_p(MmRF)
n=p/2 +1
. ™ . 92 2
- 8in ((271 - p)Z) sin <? p(2n — p)wRF>
(18b)
for even harmonics of RF signat even) and
Ipre(p)
T oo
=+2c0s (p5) Y S(n. p)Julmre) Jump(mer)
n=(p+1)/2
0
o5 (pame(t +02) + pio % 500, 9% 920~ ply )

(18c)

sign ambiguity in (17c) comes from the selection of the bider fundamental and odd harmonics of RF signabdd), where
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Fig. 4. Power of the detected signal RF component relative to dc detected power versus phase dispergioa-t¢fmoz . )/2 for different values ofngr
(* =0.1,2 =0.25,0 = 0.5,0 = 1, { = 1.25) in the externally modulated analog dispersive optical link (BSB modulation) shown in Fig. 2.

S(n, p) is a sign function expressed as In Fig. 5, the amplitude and phase response of the RF com-
. 7r 1y/2 7r ponent of the detected signal against dispersion phase #igym (
S(n, p) = sin (”5 ) — (=1 Y2 cos (”5) (19)  are plotted for five different values of optical modulation index,

and the sign uncertainty in (18a)—(18c) will define the uppétrr- As expected from eqn. (20), both amplitude and phase

(upper sign) or lower (lower sign) single-sideband optical mo@f detected signal are strongly dependent on optical modulation
ulation. index when the optical link is dispersive. The ripples in the am-

For example, we show the expression for the fundamengitude, phase and time delay at the different components of the
(p = 1) of the detected signal as detected signal [11] can be easily estimated from (18a)—(18c).

C. Harmonic Single-Sideband Up-Conversion (HSSB)

In order to generate an HSSB signal, the DD-MZM is driven
0, ) in the same way as in SSBC (Section IV-B), but a previous IF
-cos <wRF(t+91)+</>m + S(n, 1)5 (2”—1)WRF) stage is included (Fig. 3). The general expressions presented in
Section Il are used to study the frequency compodgntr
=42 [Jl(mRF)JO(mRF) at the photodetector output. From (16e), it is possible to obtain
the particular expression for thgr.o41r term as

I,,RF(1):i\/§§: S(n, 1)J,(mgp)Jn_1(mgr)

6
- COS <wRF(t +01) + ¢+ — w§F> Ipro4ir(p)
2 aw 92
+ Jo(myr)J1(mrr) = dmF cos (pz) cos 5 wir(pwr.o + wir)
0 5 00
. t+6 m £ — 3 e
oS <wRF( +61)+¢ 5 wRF> + } ) Z [5(717 P)In(m1.0)In—p(mio)
(20) n=(p+1)/2
From (20), it may be stated that the fundamental component is a . cos <(prO + wip)(t +6y)
sum of different terms, none of which suffers from dispersive at-
tenuation. Furthermore, the optical link dispersion is translated P
; - P m et S(n, p)=(2n —
to the electrical domain. For low modulation indexes, all the +PPm + i (n, ) 2 (2n=p)

terms in eqn. (20) but the first term can be neglected obtaining

the expected expression for a S$BC optical modulation [10]. - wro(pwro + wIF)) } (21a)
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Power of the detected signal RF component relative to dc detected power and detected phase ripple versus phase disfigrsioftterfy. )/2 for

different values ofnir (x = 0.1, 2 = 0.25,0 = 0.5,0 =1, { = 1.25) in the externally modulated analog dispersive optical link (358 modulation) from

Fig. 2.

for p odd and

Iprotir(p)

6o
= MJIF COS > wir(pwr.o +wir)
e
oS (pz) cos ((pwro~+wir)(t+61)+pdm + drre)

Jﬁ/?(mLO)

5 (DY Y Ja(meo)dup(mio)

n=p/2+1

)
- cos <?2 (2n—p)wLo(pro+w1F)>

+ sin ((prO + wIF)(t + 91) +p¢7n + (/)IFE)

Z Jn(mLo)Jn—p(mLo) sin ((271 - p)%)

n=p/2+1

. 7
. gin <52 (2n — plwro(pwro + wrp)> (21b)

for p even, wheres(n, p) and the sign ambiguity are explained

in Section IV-B.

Fig. 6 shows the amplitude ofthe RF term of the detected signal
againstRFfrequencykr = pfro+ fir)forsecondg = 2)and

third (p = 3) harmonics and for three different valuesf o in

an analog dispersive optical link [50 km of standard single-mode
fiber with dispersion parametdd? = 17 ps/(nmkm)] with

a DD-MZM optical up-converter (HSSB witth;p = 0.1,

fir = 500 MHz). As expected from (21b) when= 2, Io1.041r
component vanishes when the dispersion is negligible but its
level rapidly increases with frequency. On the contrégyo+1r

term always exists but its level oscillates with frequency.

D. Harmonic Double-Sideband Up-Conversion
(MITB/MATB/PSH)

The use of a standard MZM modulator, biased at the most
nonlinear points, as an harmonic up-converter is a well known
technique [2], [7]-][9]. If the MZM minimum transmission bias
(MITB) point is selected, the optical carrier level at the MZM
output is completely reduced. In this case, the MZM is biased at
Vet — Vnez| = Vi with a phase shift between MZM drives of
|$r.o1 — ¢roz| = w [pseudo self-heterodyne modulation (PSH)
from [9] is just a special case for MITB when we are only inter-
ested in thelz1. 041 term]. In the MITB case, the expressions
for the dc orl,Lo41r cOmponents at the photodetector output
from (16) are reduced to

2 o>
_ mr 2 2 (T T
Inc = [1 + = } ,,Z JZ(mpo) cos (5 :l:n§>

o

2
T

—2 [1 + %} (222)

J3r1(mro)

NgE

o~
I

0
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Fig. 6. Power of the detected signal RF component relative to dc detected power against RF frefijuercy(fi.o + fir) for second f = 2, solid line) and
third (p = 3, dashed line) harmonics and for three different valuesigf, (x = 0.5, x = 1, 0 = 1.5) in the analog dispersive optical link with a DD-MZM
optical up-converter (HSSB witherr = 0.1, fir = 500 MHz) shown in Fig. 3.

Lio+ir(p) for p even andp/2 odd. When MITB is selected, all,;.o41r
5 terms are zero fop odd.
= "Mr COS <§ wir(pwro + wIF)) If the maximum transmission bias point is selected instead
of the MITB point, the optical carrier level at the MZM output
-cos ((pwro + wir)(t + 61) + ppm + drre) is completely maximized. In this case, the MZM is biased at
oo [Vbc1 — Vbez| = 0 with a phase shift between MZM drives of
.2 Z Jarr1(ML0) oty 1—p(MLO) |pro1—¢Loz2| = 7. Inthe MATB case, the following expression
hep/4 is particularized from (16):
4 m2 s s
$ Cos <52(4/€ +2 - p)wro(pwro + wIF)) Inc = [1 + %} n;m JR(mro) cos? (”5)
(22b)
2 oo
_ e 2 2
for p even andy/2 even, and - [1 T 8 } [JO (mr.o) +2 kzo JQk(mLO)] (23a)
Iyrotir(p) Iproyir(p)
92 92
= mip cos | o wir (pwro + wrr) = mur cos | o wrr(pwro + wrr)
- cos ((pwr.o + wir)(E + 61) + pdm + P1re) - cos ((pwr.o + wir)(t + 61) + pdm + Prre)
T a(mio) =2 Y Juga(mio)daga—p(mio) AL almio) +2 > Jar(mio)da—p(mio)
k=(p+2)/4 k=p/4+1

) )
- CoS <§(4k+2—p)wLo(pro +w1p)> (22¢) - COS <52(4k — pwro(pwro + w1p)> (23b)
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for p even andy/2 even, and sion configurations can be easily studied in terms of dispersive

attenuation, dynamic range or amplitude and phase ripple.

Iprotir(p)

Finally, the general expressions for analog IM/DD dispersive

links with a DD-MZM presented here allow the study of new

02
= —1mIF COS > wir (pwrLo + wir)

~cos ((pwro + wir)(t + 01) + pPm + Prre)

oo [1]
-2 Z Jor(mro)Jox—p(mLo)
k=(p+2)/4
P [2]
- COS <52 4k — p)wro(pwro + w1p)> (23c)
] , [3]
for p even andp/2 odd. As it happened with MITB, when
MATB is selected, all,,;. o+1r terms are zero fop odd. )

From the particular expressions in (22a)-(22c) and
(23a)—(23c), understanding and assessing the dispersive at-
tenuation and gain ripple shown by the optical up-conversion!!
schemes based on DD-MZM biased on MITB/MATB is
straightforward [8], [11]. "

V. VERIFICATION OF ANALYSIS

In order to assess the validity of the expressions shown hereyy;
several time-domain simulations were carried out with the com-
mercial program OptSim 3.1 from ARTIS Software Corpora- (8]
tion. The result of these simulations was a complete agreement
between this paper expressions and the OPTSIM simulation of
the configurations shown in Figs. 2 and 3. As an example of this[gl
agreement, the position of the different symbals X, o, [J,

) in Figs. 4-6 correspond to OPTSIM results while the corre-
sponding solid/dashed lines were extracted from the expressioml
in this paper.

VI. CONCLUSION (11

The general and rigorous expressions for an IM/DD disper-
sive analog link with a DD-MZM modulator or up-converter
have been presented and demonstrated. With these general ex-
pressions, it is straightforward to study the amplitude, phase,
time delay suffered by the desired frequency component (fu
damental or harmonic) of the detected signal.

All the usual analog modulation formats (DSB C,
SSB+ C) and up-conversion schemes (HSSB, MITB, MATB
PSH) based on standard MZM or DD-MZM can be partic
ularized from the general expressions. The dispersive li
could refer to any length of standard single-mode fiber, high

modulation or up-conversion schemes.
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